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Abstract In the present work, 3-[2-(diethylamino)ethyl]-7-
oxy-4-methylcoumarin substituted cyclotriphosphazene
(4) and cyclotetraphosphazene (5) derivatives were synthesized
by the reactions of hexachlorocyclotriphosphazene
(1) or octachlorocyclotetraphosphazene (2) with
3-[2-(diethylamino)ethyl]-7-hydroxy-4-methylcoumarin (3) for
the first time. The quaternized cationic (6 and 7) and zwitterionic
(8 and 9) derivatives of these compounds (4 and 5) were obtain-
ed by the reactions of dimethyl sulfate and 1,3-propanesultone,
respectively. All newly synthesized cyclophosphazene com-
pounds (4–9) were fully characterized by elemental analysis
and general spectroscopic techniques such as FT-IR, 31P-
NMR, 1H-NMR and MALDI-TOF mass. All these coumarin
substituted cyclophosphazene compounds (4–9) were soluble in
most of organic solvents and quaternized ionic and zwitterionic
compounds (6–9) also showed excellent solubility in water. The
fluorescence behaviors of novel cyclophosphazene compounds
were investigated in methanol and water solutions. The
chemosensor properties of newly synthesized water soluble
quaternized ionic and zwitterionic cyclotriphosphazene and
cyclotetraphosphazene derivatives (6–9) were investigated in
aqueous media. These cyclophosphazene derivatives showed
fluorescence chemosensor behavior with high selectivity for
Fe3+ ions in aqueous solution.
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Introduction

Phosphazenes, in the form of linear short-chain, cyclic, or
high-molecular-weight polymers, consist of the repeating
units of -[N = PR2]- with trivalent nitrogen and pentavalent
phosphorus atoms and constitute one of the most important
compound groups in inorganic chemistry. When BR^ is the
halogen, it can be replaced with ease by alkoxy, aryloxy or
amino groups via nucleophilic substitution reactions [1–6].
Hexachlorocyclotriphosphazene, trimer, N3P3Cl6, (1) or
octachlorocyclotetraphosphazene, tetramer, N4P4Cl8 (2)
namely cyclophosphazenes are a kind of phosphazene com-
pounds that they show many special characteristics.
Cyclotriphosphazenes can be easily functionalized on the
phosphorus atoms, thus giving rise to a wide variety of
substituted molecules [7–12]. Cyclophosphazenes exhibit
useful properties for many applications such as liquid crystals
[13, 14], hydraulic fluids and lubricants [15], electrical con-
ductivity [16], rechargeable batteries [17], flame retardant ma-
terials [18], anticancer agents [19–21], antibacterial reagents
[22] and biomedical materials [23] depends on the substituted
side groups.

Coumarins have been widely used in the fields of biology,
medicine, cosmetics and fluorescent dyes [24, 25]. The struc-
ture of benzopyrone group in the coumarin derivatives has
many advantages including high fluorescence quantum yield,
large Stokes shift, excellent light stability and low toxicity
[26–28]. Moreover, coumarins play important roles as food
constituents, antioxidants, stabilizers, immunomodulatory
substances, lasers and anticancer agents [29–34]. Coumarin
derivatives have also been used as fluorescent probes of pH,
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for detection of nitric oxide, nitroxide and hydrogen peroxide
[35–37]. The development of fluorescent probes for detecting
transition metal ions has attracted great interests of researchers
because of the advantages of high selectivity and sensitivity,
non-destructive analysis and simple instrumentation [29].

Fe3+ ions play an important role in many biological pro-
cesses at the cellular level ranging from oxygen metabolism to
DNA and RNA synthesis. Iron is indispensable for most or-
ganisms, and both its deficiency and excess cause various
pathological disorders [38]. The detection of various metal
ions such as iron (III) has developed quickly because of their
importance in many biological and environmental processes
[39, 40].

Although there were a few reports on coumarin-containing
polyphosphazenes [41–43] and coumarin-containing
cyclotriphosphazenes [44, 45], there is no study about the re-
action of coumarin derivatives with cyclotetraphosphazenes.
To our knowledge, there are several examples of the water
soluble cyclophosphazenes [46–49] but there is no coumarin
bearing water soluble derivative of the cyclophosphazenes has
been reported until now. On the other hand, coumarin-base
fluorescent chemosensors have received increasing interest in
recent years [50] due to their low toxicity and easily modifica-
tion of coumarin ring by different groups. Moreover, the car-
bonyl group of coumarin can take part in coordination with
metal ions such as Fe3+ in this study. In fact, coumarin ring is
an ideal model for the design of chemosensors because the
response will be fast and efficient when guests, such as protons
and metal ions, are bound to the host coumarin probes [39].
Therefore, we motivated to the design and synthesize
coumarin substituted cyclophosphazenes chemosensors
in this study.

The aim of this study is the synthesis of coumarin substitut-
ed cyclophosphazene compounds (4 and 5) from the reactions
of N3P3Cl6 or N4P4Cl8 with 3-[2-(diethylamino)ethyl]-7-hy-
droxy-4-methylcoumarin (3). The obtained compounds 4 and
5 are the first examples of full coumarin substituted
cyclotriphosphazene and cyclotetraphosphazene derivatives,
respectively (Scheme 1). The newly synthesized compounds
4 and 5 were reacted with excess dimethylsulphate or 1,3-
propanesultone in DMF to obtain water soluble coumarin de-
rivatives of cyclophosphazenes and the quaternized ionic (6
and 7) and zwitterionic (8 and 9) compounds were obtained
(Scheme 1). All newly synthesized cyclophosphazene com-
pounds (4–9) were fully characterized by elemental analysis
and general spectroscopic techniques such as FT-IR, 31P-
NMR, 1H-NMR and MALDI-TOF mass. The fluorescence
behaviors of these compounds were investigated in methanol
and water solutions. The chemosensor properties of the newly
synthesized water soluble cyclophosphazene compounds (6–
9) were investigated against to different metal ions and these
compounds were found highly selective to Fe3+ ions in aque-
ous solution.

Experimental

Materials

H e x a c h l o r o c y c l o t r i p h o s p h a z e n e a n d
octachlorocyclotetraphosphazene (Otsuka Chemical Co.,
Ltd) were purified by fractional crystallization from n-hexane.
Cesium carbonate (99%) and 1,3-propanesultone (99%)were
obtained from Alfa Aesar. 3-[2-(Diethylamino)ethyl]-7-hy-
droxy-4-methylcoumarin hydrochloride (≥99.0 %), N,N-
dimethylformamide (≥99.0 %) were obtained from Sigma Al-
drich. Dimethyl sulphate (99 %), tetrahydrofuran (≥99.0 %),
dichloromethane (≥99.0%), n-hexane (≥95.0%), ethyl acetate
(≥99.0 %) were obtained from Merck. All used solvents were
purified by conventional methods. THF was distilled over a
sodium–potassium alloy under an atmosphere of dry argon.
All reactions were performed under a dry argon atmosphere.
CDCl3 and D2O used for NMR spectroscopy are obtained
from Goss Scientific.

Equipments

Elemental analyses were obtained using a Thermo Finnigan
Flash 1112 Instrument. Positive ion and linear mode MALDI-
MS of complexes were obtained in dihydroxybenzoic acid as
MALDI matrix using nitrogen laser accumulating 50 laser
shots using Bruker Microflex LT MALDI-TOF mass spec-
trometer. Analytical Thin Layer Chromatography (TLC) was
performed on silica gel plates (Merck, Kieselgel 60, 0.25 mm
thickness) with F254 indicator.

1H and 31P NMR spectra were
recorded in CDCl3 or D2O solutions on a Varian INOVA
500 MHz spectrometer using TMS as an internal reference
for 1H NMR and 85 % H3PO4 as an external reference for
31P NMR. FT-IR spectra were recorded on a Perkin Elmer
Spectrum 100 FT-IR spectrometer. UV/Vis spectra were re-
corded with a Shimadzu 2101 UV spectrophotometer. Fluo-
rescence emission spectra were recorded on a Varian Eclipse
spectrofluoremeter using 1 cm pathlength cuvettes at room
temperature.

Synthesis

Reaction of 1 with 3 to form compound 4

3-[2-(Diethylamino)ethyl]-7-hydroxy-4-methylcoumarin hy-
drochloride (3) (0.2 g, 0.72 mmol) and Cs2CO3 (0.47 g,
1.44 mmol) were dissolved in 20 mL of dry THF under an
argon atmosphere in a 100 mL three-necked round-bottomed
flask. The reaction mixture was cooled in an ice-bath and
hexachlorocyclotriphosphazene (1), (0.042 g, 0.12 mmol
10 mL of dry THF) was quickly added to a stirred solution
under an argon atmosphere. The reaction mixture was stirred
for 3 days at room temperature and the reaction followed on

1820 J Fluoresc (2015) 25:1819–1830



TLC silica gel plates using methanol as eluent. The reaction
mixture was filtered to remove the formed cesium chloride
and the solvent was evaporated under reduced pressure. The
resulting colorless oil was dissolved in 5 mL of CH2Cl2 and
this solution was dropped in n-hexane. The solid product was
precipitated and collected by filtration. This process was re-
peated twice. The white solid product was obtained. Yield
0 . 1 3 g ( 6 0 %) . M . p . 105 °C . Ana l Ca l c . f o r
[(N3P3)(C16H20NO3)6], requires: C, 64.74; H, 6.79; N,
7.08 %, Found: C, 64.70; H, 6.76 N; 7.03 %. FT-IR: υmax/
cm−1: 3063 (Ar-CH), 2934–2890 (Aliphatic CH), 1708 (C =
O), 1608 (C = C), 1209 (P = N), 1131 (C–O). 31P NMR,

(202 MHz, CDCl3, 298 K) δ, ppm: 7.59. 1H NMR
(500 MHz, CDCl3, 298 K) δ, ppm: 7.49 (d, J3 = 8.79 Hz,
6H, Ar-CH), 7.01 (dd, J3 = 8.77 and J4 = 2.15 Hz, 6H, Ar-
CH), 6.88 (sd, J4 = 2.21 Hz, 6H, Ar-CH), 2.79-2.70 (m, 12H,
C-CH2), 2.55-2.67 (m, 36H, N-CH2), 2.38 (s, 18H, Ar-CH3)
1.07 (t, J3 = 7.12 Hz, 36H, C-CH3). MALDI-TOF (m/z) calc.
1780.95, found: 1782.58 [M+H]+.

Reaction of 2 with 3 to form compound 5

3-[2-(Diethylamino)ethyl]-7-hydroxy-4-methylcoumarin hy-
drochloride (3) (0.2 g, 0.72 mmol) and Cs2CO3 (0.47 g,

Scheme 1 Synthesis route of coumarin substituted cyclophosphazene derivatives

J Fluoresc (2015) 25:1819–1830 1821



1.44 mmol) were dissolved in 20 mL of dry THF under an
argon atmosphere in a 100 mL three-necked round-bottomed
flask. The reaction mixture was cooled in an ice-bath and
octachlorocyclotetraphosphazene (2), (0.042 g, 0.09 mmol)
in 10mL of dry THFwas quickly added to this stirred solution
under an argon atmosphere. The reaction mixture was stirred
for 3 days at room temperature and the reaction followed on
TLC silica gel plates using methanol as eluent. The reaction
mixture was filtered to remove the formed cesium chloride
and the solvent was removed under reduced pressure. The
resulting colourless oil was dissolved in 5 mL of CH2Cl2
and this solution was dropped in n-hexane. The solid product
was precipitated and collected by filtration. This process was
repeated twice. The white solid product 5 was obtained. Yield
0 . 1 2 g ( 5 7 %) . M . p . 202 °C . Ana l Ca l c . f o r
[(N4P4)(C16H20NO3)8], requires: C, 64.74; H, 6.79; N,
7.08 %, Found: C, 64.59; H, 6.77 N; 7.03 %. FT-IR: υmax/
cm−1: 3065 (Ar-CH), 2965–2876 (Aliphatic-CH), 1710 (C =
O), 1609 (C = C), 1265 (P = N), 1135 (C–O). 31P NMR,
(202 MHz, CDCl3, 298 K) δ, ppm: −14.37. 1H NMR
(500 MHz, CDCl3, 298 K) δ, ppm: 7.45 (d, J3 = 8.83 Hz,
8H, Ar-CH), 6.95 (dd, J3 = 8.81 and J4 = 2.32 Hz, 8H, Ar-
CH), 6.82 (sd, 8H, J4 = 2.30 Hz, Ar-CH), 2.74-2.81 (broad,
16H, C-CH2), 2.61-2.70 (broad, 48H, N-CH2), 2.36 (s, 24H,
Ar-CH3), 1.12 (t, J3 = 6.82 Hz, 48H, C-CH3). MALDI-TOF
(m/z) calc. 2374.59, found: 2375.26 [M+H]+.

Reaction of 4 with dimethylsulphate to form compound 6

Compound 4 (0.05 g, 0.028 mmol) was heated to 120 °C in
freshly distilled DMF (3 mL) and excess dimethylsulphate
(0.1 mL) was added dropwise to this solution. The mixture
was stirred at 120 °C for 24 h. After this time, the mixture
was cooled to room temperature and the product was precipi-
tated with ethyl acetate. The obtained product (6) showed ex-
cellent solubility in water. Yield 0.045 g (74 %). Anal Calc. for
[(N3P3)(C17H23NO3)6(SO4)3], requires: C, 56.74; H, 6.44; N,
5.84 %, Found: C, 56.69; H, 6.40; N, 5.79 %. FT-IR: υmax/
cm−1: 3066 (Ar–CH), 2958–2855 (Aliphatic-CH), 1704 (C =
O), 1637 (C = C), 1204 (P = N), 1058 (C–O). 999 (S = O), 756
(S–O). 31P NMR, (202 MHz, CDCl3, 298 K) δ, ppm: 7.78. 1H
NMR (500 MHz, D2O, 298 K) δ, ppm: 7.50 (d, J3 = 8.63 Hz,
6H, Ar-CH), 6.76 (dd, J3 = 8.65 and J4 = 2.09 Hz, 6H, Ar-CH),
6.65 (sd, J4 = 2.11 Hz, 6H, Ar-CH), 3.45-3.70 (m, 36H, N-
CH2), 3.11 (s, 18H, N-CH3), 2.81-2.84 (m, 12H, C-CH2), 2.21
(s, 18H, Ar-CH3), 1.33 (t, J3 = 7.10, 36H, C-CH3). MALDI-
TOF (m/z) calc. 2159.39, found 2048.4 [M-SO4-CH3]

+, 1922.8
[M-2SO4-3CH3]

+, 1796.7 [M-3SO4-5CH3]
+.

Reaction of 4 with 1,3-propanesultone to form compound 8

Compound 4 (0.05 g, 0.028 mmol) and excess 1,3-
propanesultone (0.068 g, 0.56 mmol) were dissolved in DMF

(5 mL) and kept at 50 °C for 24 h under nitrogen atmosphere
while stirring. After this time, the product was precipitated with
ethyl acetate, filtered and washed with copious amounts of
CH2Cl2 and acetone to remove excess 1,3-propanesultone.
The obtained product (8) showed excellent solubility in water.
Yield 0.056 g (85 %). Anal Calc. for [(N3P3)(C19H26NSO6)6],
requires: C, 54.47; H, 6.25; N, 5.01 %, Found: C, 54.30; H,
6.45; N, 4.79%. FT-IR: υmax/cm

−1: 3066 (Ar–CH), 2937–2807
(Aliphatic-CH), 1704 (C = O), 1637 (C = C), 1169 (P = N),
1102(C–O). 1035 (S = O), 662 (S–O). 31P NMR, (202 MHz,
CDCl3, 298 K) δ, ppm: 7.83. 1H NMR (500 MHz, D2O, 298
K) δ, ppm: 7.53 (d, J3 = 8.54 Hz, 6H, Ar-CH), 6.81 (dd, J3 =
8.55 and J4 = 2.18 Hz, 6H, Ar-CH), 6.66 (sd, J4 = 2.16 Hz, 6H,
Ar-CH), 4.43 (m, 12H, S-CH2), 3.54-3.62 (m, 12H, N-CH2),
3.32-3.45 (m, 36H, N-CH2), 2.82-2.85 (m, 12H, C-CH2), 2.57-
2.63 (broad, 12H, C-CH2), 2.27 (s, 18H, Ar-CH3), 1.23 (t, J

3 =
7.01 Hz, 36H, C-CH3). MALDI-TOF-MS: m/z: calcd.
2513.91, found 2144.9 [M-3(C3H6SO3)]

+, 2021.8 [M--
4(C3H6SO3)]

+, 1898.9 [M-5(C3H6SO3)]
+.

Reaction of 5 with dimethylsulphate to form compound 7

Compound 5 (0.05 g, 0.021 mmol) was heated to 120 °C in
freshly distilled DMF (4 mL) and excess dimethylsulphate
(0.1 mL) was added dropwise to this solution. The mixture
was stirred at 120 °C for 24 h. After this time, the mixture was
cooled to room temperature and the product was precipitated
with ethyl acetate. The obtained product (7) showed excellent
solubility in water. Yield 0.04 g (76 %). Anal Calc. for
[(N4P4)(C17H23NO3)8(SO4)4], requires: C, 56.74; H, 6.44;
N, 5.84 %, Found: C, 56.71; H, 6.41; N, 5.79 %. FT-IR:
υmax/cm

−1: 3060 (Ar–CH), 2806–2930 (Aliphatic-CH),
1705 (C = O), 1641 (C = C), 1201 (P = N), 1047 (C–O),
1000 (S = O), 758 (S–O). 31P NMR, (202 MHz, CDCl3,
298 K) δ, ppm: −15.85. 1H NMR (500 MHz, D2O, 298 K)
δ, ppm: 7.56 (d, J3 = 8.76 Hz, 8H, Ar-CH), 6.84 (dd, J3 = 8.73
and J4 = 2.28 Hz, 8H, Ar-CH), 6.68 (sd, J4 = 2.25 Hz, 8H, Ar-
CH), 3.32-3.45 (broad, 48H, N-CH2), 3.02 (s, 24H, N-CH3),
2.80-2.72 (broad, 16H, C-CH2) 2.28 (s, 24H, Ar-CH3), 1.28 (t,
J3 = 6.94 Hz, 48H, C-CH3). MALDI-TOF-MS: m/z: calcd.
2879.12, found 2770 [M-SO4-CH3]

+, 2644.1 [M-2SO4-
3CH3]

+, 2516.7 [M-3SO4-5CH3]
+, 2390.6 [M-4SO4-7CH3]

+.

Reaction of 5 with 1,3-propanesultone to form compound 9

Compound 5 (0.05 g, 0.021 mmol) and excess 1,3-
propanesultone (0.05 g, 0.42 mmol) were dissolved in DMF
(3 mL) and kept at 50 °C for 24 h under nitrogen atmosphere
while stirring. After this time, the product was precipitated
with ethyl acetate, filtered and washed with copious amounts
of CH2Cl2 and acetone to remove excess 1,3-propanesultone.
The product (9) showed excellent solubility in water. Yield
0.064 g (91 %). Anal Calc. for [(N4P4)(C19H26NSO6)8],
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requires: C, 54.47; H, 6.25; N, 5.01 %, Found: C, 54.28; H,
6.45 N; 4.68 %. FT-IR: υmax/cm

−1: 3066 (Ar–CH), 2810–
2954 (Aliphatic-CH), 1705 (C = O), 1641 (C = C), 1166 (P
= N), 1047 (C–O), 1032 (S = O), 732 (S–O). 31P NMR,
(202 MHz, CDCl3, 298 K) δ, ppm: −14.56. 1H NMR
(500 MHz, D2O, 298 K) δ, ppm: 7.68 (d, J3 = 8.57 Hz, 8H,
Ar-CH), 6.88 (dd, J3 = 8.59 and J4 = 2.23 Hz, 8H, Ar-CH),
6.54 (sd, J4 = 2.21 Hz, 8H, Ar-CH); 4.36 (m, 16H, S-CH2),
3.48-3.54 (m, 16H, N-CH2), 3.25-3.34 (m, 48H, N-CH2),
2.78-2.82 (broad, 16H, C-CH2), 2.42-2.53 (broad, 16H, C-
CH2), 2.12 (s, 24H, Ar-CH3), 1.18 (t, J3 = 7.22 Hz, 48H, C-
CH3). MALDI-TOF-MS: m/z: calcd. 3351.74, found 2744.9
[M-5(C3H6SO3)]

+, 2621.9 [M-6(C3H6SO3)]
+, 2499.9 [M--

7(C3H6SO3)]
+, 2377.6 [M-8(C3H6SO3)]

+.

Results and discussion

Synthesis and structural characterization of compounds
4–9

The synthesis route of new 3-[2-(diethylamino)ethyl]-7-oxy-
4-methylcoumarin substituted cyclophosphazene derivatives
(4–9) was given in Scheme 1. All newly synthesized
cyclophosphazene compounds (4–9) were fully characterized
by general spectroscopic techniques such as FT-IR, 31P-NMR,

1H-NMR and MALDI-TOF mass. The elemental analysis da-
ta of these compounds were also supplied. All results were
confirmed the expected structures of the compounds.

The formed products in each reaction mixture were
checked by TLC and proton-decoupled 31P NMR spectrosco-
py. After purification of pure compounds from the reaction
mixture, the proton decoupled 31P NMR spectra of coumarin
substituted cyclotriphosphazene (4 , 6 and 8) and
cyclotetraphosphazene (5, 7, and 9) compounds showed a
sharp single peak because the chemical environment of all
the phosphorus nuclei (A3 and A4 spin systems for
cyclotriphosphazene and cyclotetraphosphazene compounds,
respectively) are equivalence (Fig. 1 for compounds 4, 6, 8
and Fig. 2 for compounds 5, 7, 9). In addition to the elemental
analysis results, the mass spectral data of the newly synthe-
sized hexa- and octa-coumarin substituted cyclophosphazenes
(4–9) were consistent with the assigned formulations. Mass
spectra results of compounds 4 and 5 clearly show the major
molecular ion peaks, which confirmed the exact composition
and no chlorine pattern, could be recognized for the structures
(Fig. 3a and b). The molecular ion peaks of compound 4 and 5
were observed at m/z 1782.5 and 2375.2 as [M+H]+,
respectively.

F T- I R s p e c t r a o f t h e n e w l y s y n t h e s i z e d
3-[2-(diethylamino)ethyl]-7-oxy-4-methylcoumarin substitut-
ed cyclophosphazene compounds 4–9 showed characteristic

Fig. 1 31P NMR spectra of (a) compound 4 in CDCl3 solution (b) compound 6 in D2O solution and (c) compound 8 in D2O solution
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stretching bands of ν(C–H)arom at around 3000 cm−1. The sharp
peak in the IR spectra for the C = O vibrations for the lactone
ring were observed at around 1640–1715 cm−1. The vibration

bands assignable to the stretching of the –P = N– bands for
compounds 4–9 were observed at frequency in the range of
1165–1260 cm−1. The characteristic vibrations corresponding
to ether groups (C–O–C) were observed at around 1135–
1050 cm−1. The other main peaks were observed for aliphatic
CH stretching at around 2806–2930 cm−1, S = O stretching at
around 1000–1035 cm−1 and S–O stretching at around 750–
660 cm−1. The observed peaks related to S = O and S–O
groups were indicative for the formation of quaternized and
zwitterionic complexes.

Ground state electronic absorption and fluorescence
properties

The ground state electronic absorption spectra of newly
synthesized coumarin substituted cyclophosphazene deriv-
atives (4–9) were measured in methanol. Mainly two ab-
sorption bands were observed at approximately 280 and
310 nm in the UV region of electronic spectra (Fig. 4 as
examples for compounds 4, 6 and 8). The fluorescence
behaviors were examined in methanol for all studied com-
pounds (4–9) and in both methanol and aqueous solutions
for quaternized ionic or zwitterionic compounds (6–9). All
these compounds gave an emission band at 395 nm in
methanol (Fig. 5 as examples for compounds 4, 6 and 8).
These measurements show that the intensity of the

Fig. 2 31P NMR spectra of (a) compound 5 in CDCl3 solution (b) compound 7 in D2O solution and (c) compound 9 in D2O solution

Fig. 3 The mass spectra of (a) compound 4 and (b) compound 5

1824 J Fluoresc (2015) 25:1819–1830



emission peak was increased by the quaternization of the
nitrogen atom on the coumarin group suggesting that the
positive charge on the nitrogen atom changed the electron
density on the coumarin ring. The zwitterionic compounds
(8 and 9) showed more intense emission peaks than
quaternized counterparts (6 and 7). Surprisingly, the emis-
sion peaks of water soluble coumarin substituted
cyclophosphazene derivatives (6–9) were observed at
460 nm with approximately 60 nm red-shift in aqueous
solution (Fig. 6 as an example for compound 6). It could
be due to the changing of electron density of coumarin ring
in aqueous solution suggesting that the formation of hy-
drogen bonds between oxygen atoms on the coumarin ring
and hydrogen atoms on the water molecules.

Chemosensor properties to metal ions

The metal binding capability of coumarin molecules may
allow the use of the newly synthesized cyclophosphazene

derivatives as metal sensors. This study was especially fo-
cused investigation of chemosensor behavior of synthe-
sized compounds in aqueous solution. For this purpose,
the water soluble quaternized (6 and 7) and zwitterionic
(8 and 9) coumarin substituted cyclophosphazene com-
pounds were tested to a variety of metal ions (Mg2+,
Ca2+, Ba2+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Ag+,
Cd2+, Hg2+, Pb2+ and Al3+) using fluorescence spectropho-
tometer. All fluorescence emission spectral studies were
performed in aqueous solutions at room temperature. The
aqueous solutions of the corresponding metal chlorides
(nitrate derivative for Ag ion) were used as the source of
metal ions. The fluorescence spectra of the novel coumarin
substituted cyclophosphazene compounds (6–9) exhibited
little enhancement by the addition of the 5 μL of 1.00×
10−2 M metal solutions except for Fe3+. A significant de-
crease in the fluorescence intensities were observed by the
addition of the Fe3+ cations to the aqueous solutions of
quaternized (6 and 7) and zwitterionic (8 and 9) coumarin
substituted cyclophosphazene compounds, while no or
minimal change was observed with the other metal ions
(Fig. 7 as an example for compound 6).

The titration of the probe compounds (6–9) with Fe3+

cations showed a decrease in the fluorescence intensities
by the increasing concentrations of Fe3+ cations (Fig. 8a
as an example for compound 6). The graphs from a
Benesi-Hildebrand analysis showed a linear behavior
for al l studied water soluble cyclophosphazene
chemosensor compounds interactions with Fe3+ ions in-
dicated the stoichiometry of between these chemosensors
and Fe3+ cations is 1:1 (Fig. 8b as an example for com-
pound 6). The Continuous Variation method was also
used for the determination of the stoichiometry between
the novel water soluble cyclophosphazene chemosensors
and detected metal cations. Consistent with the Benesi-
Hildebrand graphs, application of the Method of Contin-
uous Variation resulted in a Job’s with a maximum mole

Fig. 5 Fluorescence emission spectra of compounds 4, 6 and 8 in
methanol (C = 2.5×10−6 M, λex = 315 nm)

0

0.2

0.4

0.6

0.8

1

004053003052

A
b

so
rb

an
ce

Wavelength (nm)

4

6

8

Fig. 4 Electronic absorption spectra of compounds 4, 6 and 8 in
methanol (C = 2.5×10−6 M)

Fig. 6 Fluorescence emission spectra of compound 6 in methanol and
water solutions (C = 1.00×10−5 M, λex = 315 nm)
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fraction for Fe3+ cations was observed as 0.50 (Fig. 8c as
an example fo r compound 6 ) , ind ica t ing tha t
cyclophosphazene molecules and Fe3+ ions preferred
1:1 stoichiometry for the formation of complexes be-
tween the chemosensor compounds (6–9) and Fe3+ cat-
ions in aqueous solutions.

Fluorescence titration experiment can be used for deter-
mine limit of detection (LOD) and association constant
(Ka). The detection limit values of cyclophosphazene
chemosensors as fluorescent sensors for the analysis of
Fe3+ were determined from the plot of fluorescence inten-
sity as a function of the concentration of Fe3+ and Eq. 1
was used for calculation of LOD values. According to the
fluorescence titration curve limits of detection of sensors
for Fe3+ were determined by Stern-Volmer plot [51] and
this value was found as 0.37 mg/L (6.76 μM) which is
allowed for the detection of micromolar concentration
range of Fe3+.

LOD ¼ 3σ=K ð1Þ

in this equation; σ is standard deviation of ten repetitive
measurements of blank sample, K, slope of calibration
curve. The Benesi-Hildebrand equation (Eq. 2) was used
for de te rmine the assoc ia t ion cons tan t (Ka ) o f
cyclophosphazene-Fe3+ complexes [52, 53].

1

F−F0
¼ 1

Kax Fmax−F0ð Þx Fe3þ½ � þ
1

Fmax−F0
ð2Þ

fluorescence intensity of sensor at 460 nm at a given Fe3+

concentration is F, fluorescence intensity of free
chemosensor is Fo, maximum fluorescence intensity of
chemosensor at 460 nm with Fe3+ is Fmax . In this equation,
plotting 1/(F-Fo) versus 1/[Fe3+]. The data were linearly
fitted to the Benesi–Hildebrand equation and the Ka value
was obtained from the slope and intercept of the line. The
association constant (Ka) for Fe3+ binding in coumarin
substituted cyclophosphazene chemosensors were deter-
mined to be 4.91274×105 M−1.

The interference from competitive metal ions

Selectivity is significant and essential phenomenon for
chemosensors. To further evaluate the selectivity of cou-
marin substituted cyclophosphazene chemosensors toward
various metal ions, competitive experiments were con-
ducted to study the influence of other metal ions on
Fe3+ binding with these chemosensors. For this purpose,
one equivalent of Mg2+, Ca2+, Ba2+, Mn2+, Fe2+, Co2+,
Ni2+, Cu2+, Zn2+, Ag+, Na+, Cd2+, Hg2+, Pb2+, Cr3+, K+,
Li+ and Al3+ as competitive metal ions was used and
mixture of competitive metal ions absence and presence
of Fe3+ were added to solution of coumarin substituted
cyclophosphazene chemosensors. Figure 9 shows that
competitive metal ions had no interference for detection
of Fe3+. According to these results, newly synthesized
cyclophosphazene compounds can be clearly used for
Fe3+ detection with high selectivity over other competi-
tive metal ions in aqueous solution.

Fig. 7 The fluorescence intensity
of the compound 6 with and
without metal ions in aqueous
solution. Addition of Fe+3 ions to
the solution prevent fluorescent
emission hence provide a
selective detection
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Fig. 9 Fluorescence response of
chemosensor 6 (C = 1.00×10−5

M) to various cations in aqueous
solution (Excitation wavelength =
315 nm). The red bars represent
the fluorescent intensity of
chemosensor 6. The blue bars
represent the fluorescence
changes that occur upon the
addition of competing ions to the
solution containing chemosensor
6 and Fe3+ (The concentration of
the metal ions is 1×10−2 M)
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Fig. 8 (a) Fluorescence response of chemosensor 6 to various equivalents of Fe+3. (b) The Benesi-Hildebrand graph and (c) Job’s plot of 6-Fe+3 complexes in
aqueous solutions. The total concentration of 6 and Fe+3 was 1×10−2 M. The excitation wavelength was 320 nm. The monitored wavelength was 460 nm
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Conclusion

The synthesis and characterization of six or eight
3-[2-(diethylamino)ethyl]-7-oxy-4-methylcoumarin substitut-
ed trimeric and tetrameric phosphazene compounds (4 and 5)
and their quaternized (6 and 7) and zwitterionic derivatives (8
and 9) were reported for the first time in this study. The newly
synthesized coumarin substituted cyclophosphazene deriva-
tives showed good solubility in most of organic solvents. In
addition to this, the quaternized ionic (6 and 7) and zwitter-
ionic derivatives (8 and 9) showed excellent solubility in wa-
ter. The newly synthesized compounds 5, 7 and 9 are the first
examples of coumarin substituted cyclotetraphosphazene
compounds. On the other hand, the synthesized quaternized
(6 and 7) and zwitterionic (8 and 9) cyclophosphazene com-
pounds are the first examples of water soluble derivatives of
coumarin substituted cyclophosphazene compounds. The
fluorescence behaviors of the synthesized compounds were
investigated in methanol for all compounds and in both meth-
anol and aqueous solutions for quaternized ionic and zwitter-
ionic compounds. The studied quaternized ionic and zwitter-
ionic compounds showed approximately 60 nm red-shifted
emission peak in water compared to in methanol. This could
be attributed to the formation of hydrogen bonds between
coumarin groups and water molecules. In addition, the effects
of metal ions to the fluorescence behavior of the studied com-
pounds were studied in order to use the compounds as
chemosensors for metal ions. For this purpose the water solu-
ble quaternized ionic (6 and 7) and zwitterionic (8 and 9)
compounds were tested because the determination of the met-
al ions in aqueous solution is very important for biological and
environmental applications. A significant decrease in the fluo-
rescence signal of quaternized ionic and zwitterionic com-
pounds by the addition of the Fe3+ cation were observed in
aqueous media. All coumarin substituted quaternized ionic
and zwitterionic cyclophosphazene compounds (6–9) showed
highly selectivity towards Fe3+ ions and these newly synthe-
sized compounds have the potential to use as chemosensors
for this metal ion in aqueous media.
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